
Event Based Programming

Check out EventBasedProgramming from SVN

There is a survey on ANGEL for you to
indicate your partner preference for the next
pair programming project.
Please complete it by 1 PM on Wednesday if
you want a say in who you work with.

Share designs for the Game
interface

Charges: Look at completed
code in new repository

public interface Charge {
/**
* regular javadocs here
*/
Vector forceAt(int x, int y);

/**
* regular javadocs here
*/
void drawOn(Graphics2D g);

}

public class PointCharge implements Charge {
…

}

interface, not class

No method
body, just a
semi-colon

No “public”,
automatically

are so

PointCharge promises to implement all the
methods declared in the Charge interface

<<interface>>
Charge

PointCharge LinearCharge

Space

Session 13 Q10

Distinguishes
interfaces

from classes

Hollow, closed
triangular tip

means
PointCharge is a

Charge

Can pass an instance of a class where an interface
type is expected
◦ But only if the class implements the interface
We can pass LinearCharges to Space’s
addCharge(Charge c) method without changing
Space!
We can pass any any object from a class that
implements ActionListener to a JButton’s
addActionListener method !
Use interface types for fields, method parameters,
and return types whenever possible

Q11

Charge c = new PointCharge(…);
Vector v1 = c.forceAt(…);
c = new LinearCharge(…);
Vector v2 = c.forceAt(…);

The type of the actual object determines the
method used.

Q12

java.util.Comparable
◦ Says that there is a "less than" ordering relation

between objects of the class that implements
Comparable.

public class Fraction implements Comparable<Fraction>{

. . .

@Override
public int compareTo(Fraction other){

return this.numerator*other.denominator –
this.denominator*other.numerator;

}

Implementing this interface allows us to call
Arrays.sort(), etc. with an array of Fractions

Use Windows Explorer (MY Documents\...) to
examine the folder structure of the
OnToInterfaces packages
In particular note
◦ …JavaWorkspace\OnToInterfaces\src\edu\

roseHulman\csse220\charges

Origin:
◦ Poly many
◦ Morph shape
Classes implementing an interface give many
differently “shaped” objects for the interface
type
Late Binding: choosing the right method
based on the actual type of the implicit
parameter at run time.
◦ a.k.a dynamic binding

Q13,14

We say what to draw

Java windowing
library:
◦ Draws it
◦ Gets user input
◦ Calls back to us with

events

We handle events
Hmm, donuts

New Quiz: Q1

Many kinds of events:
◦ Mouse pressed, mouse released, mouse moved,

mouse clicked, button clicked, key pressed, menu
item selected, …

We create event listener objects
◦ that implement the right interface
◦ that handle the event as we wish

We register our listener with an event source
◦ Sources: buttons, menu items, graphics area, …

Q2

Classes can be defined inside other classes or
methods
Used for “smallish” helper classes

Example: Ellipse2D.Double

Often used for ActionListeners…

Outer class Inner class

Q3

Sometimes very small helper classes are only
used once
◦ This is a job for an anonymous class!

Anonymous no name
A special case of inner classes

Used for the simplest ActionListeners…

Inner classes can access any variables in
surrounding scope

Caveats:
◦ Local variables must be final
◦ Can only use instance fields of surrounding scope if

we’re inside an instance method

Example:
◦ Prompt user for what porridge tastes like

Layout in Java windows

JFrame’s add(Component c) method
◦ Adds a new component to be drawn
◦ Throws out the old one!
JFrame also has method
add(Component c, Object constraint)
◦ Typical constraints:

BorderLayout.NORTH, BorderLayout.CENTER
◦ Can add one thing to each “direction”, plus center
JPanel is a container (a thing!) that can display
multiple components
Default Frame layout is BorderLayout; default
Panel Layout is FlowLayout.
There are also GridLayout, CardLayout, etc.

Q4,5

So, how do we do this?

With GUIs we’re giving up control
◦ To the user
◦ To Java windowing library

To update graphics:
◦ We tell Java library that we need to be redrawn:

space.repaint()
◦ Library calls paintComponent() when it’s ready

Don’t call paintComponent() yourself! It’s
just there for Java’s call back.

Q6

public interface MouseListener {
public void mouseClicked(MouseEvent e);
public void mouseEntered(MouseEvent e);
public void mouseExited(MouseEvent e);
public void mousePressed(MouseEvent e);
public void mouseReleased(MouseEvent e);

}

Q7

BigRational
HW 14

	CSSE 220 Day 14
	Partner preference Survey
	Get Your Game On
	Leftovers From Session 13
	Example
	Notation: In Code
	Notation: In UML diagram
	How does all this help reuse?
	Why is this OK?
	An important Inteface�(we saw this in the Fraction class)
	Packages and Folders
	Polymorphism (more later …)
	Let’s Get GUI: (recap and extension)�Graphical User Interfaces in Java
	Handling Events
	Using Inner Classes
	Anonymous Classes
	Inner Classes and Scope
	Time to Make�the Buttons
	Key Layout Ideas
	Slide Number 20
	Repaint (and thin no more)
	Mouse Listeners
	Possible Work Time

